Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
PLoS Pathog ; 19(7): e1011018, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428793

RESUMO

Human schistosomiasis is a neglected tropical disease caused by Schistosoma mansoni, S. haematobium, and S. japonicum. Praziquantel (PZQ) is the method of choice for treatment. Due to constant selection pressure, there is an urgent need for new therapies for schistosomiasis. Previous treatment of S. mansoni included the use of oxamniquine (OXA), a drug that is activated by a schistosome sulfotransferase (SULT). Guided by data from X-ray crystallography and Schistosoma killing assays more than 350 OXA derivatives were designed, synthesized, and tested. We were able to identify CIDD-0150610 and CIDD-0150303 as potent derivatives in vitro that kill (100%) of all three Schistosoma species at a final concentration of 71.5 µM. We evaluated the efficacy of the best OXA derivates in an in vivo model after treatment with a single dose of 100 mg/kg by oral gavage. The highest rate of worm burden reduction was achieved by CIDD -150303 (81.8%) against S. mansoni, CIDD-0149830 (80.2%) against S. haematobium and CIDD-066790 (86.7%) against S. japonicum. We have also evaluated the ability of the derivatives to kill immature stages since PZQ does not kill immature schistosomes. CIDD-0150303 demonstrated (100%) killing for all life stages at a final concentration of 143 µM in vitro and effective reduction in worm burden in vivo against S. mansoni. To understand how OXA derivatives fit in the SULT binding pocket, X-ray crystal structures of CIDD-0150303 and CIDD-0150610 demonstrate that the SULT active site will accommodate further modifications to our most active compounds as we fine tune them to increase favorable pharmacokinetic properties. Treatment with a single dose of 100 mg/kg by oral gavage with co-dose of PZQ + CIDD-0150303 reduced the worm burden of PZQ resistant parasites in an animal model by 90.8%. Therefore, we conclude that CIDD-0150303, CIDD-0149830 and CIDD-066790 are novel drugs that overcome some of PZQ limitations, and CIDD-0150303 can be used with PZQ in combination therapy.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Praziquantel/farmacologia , Praziquantel/química , Oxamniquine/farmacologia , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Schistosoma mansoni , Terapia Combinada , Doenças Negligenciadas/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36758271

RESUMO

The antischistosomal drug oxamniquine, OXA, requires activation by a sulfotransferase within the parasitic worm to enable killing. Examination of the pharmacokinetic/pharmacodynamic (PK/PD) relationship for OXA identified an in vitro-in vivo paradox with the maximal clinical plasma concentrations five-to ten-times lower than the efficacious concentration for in vitro schistosomal killing. The parasite resides in the vasculature between the intestine and the liver, and modeling the PK data to determine portal concentrations fits with in vitro studies and explains the required human dose. In silico models were used to predict murine dosing to recapitulate human conditions for OXA portal concentration and time course. Follow-up PK studies verified in mice that a 50-100 mg/kg oral gavage dose of OXA formulated in acetate buffer recapitulates the 20-40 mg/kg dose common in patients. OXA was rapidly cleared through a combination of metabolism and excretion into bile. OXA absorbance and tissue distribution were similar in wild-type and P-gp efflux transporter knockout mice. The incorporation of in vitro efficacy data and portal concentration was demonstrated for an improved OXA-inspired analog that has been shown to kill S. mansoni, S. haematobium, and S. japonicum, whereas OXA is only effective against S. mansoni. Second-generation OXA analogs should optimize both in vitro killing and physiochemical properties to achieve high portal concentration via rapid oral absorption, facilitated by favorable solubility, permeability, and minimal intestinal metabolism.


Assuntos
Oxamniquine , Esquistossomicidas , Humanos , Camundongos , Animais , Oxamniquine/farmacologia , Schistosoma , Esquistossomicidas/farmacologia , Schistosoma mansoni
3.
Eur J Med Chem ; 242: 114641, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027862

RESUMO

Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 µm we improved antischistosomal activity down to 25 µm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 µm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 µm, and importantly five of them have antischistosomal activity also at 10 µm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 µm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.


Assuntos
Esquistossomose , Esquistossomicidas , Adulto , Aldeído Desidrogenase/farmacologia , Animais , Dissulfiram/farmacologia , Humanos , Doenças Negligenciadas , Nitrogênio/farmacologia , Oxamniquine/química , Oxamniquine/farmacologia , Piperazinas/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Enxofre/farmacologia
4.
J Biomol Struct Dyn ; 40(3): 995-1009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32924851

RESUMO

Schistosomiasis is a neglected disease of considerable health importance in tropical and subtropical regions. Its treatment relies on the use of praziquantel or oxamniquine but there are reported cases of treatment failures due to resistance or tolerance. Again, derivatives of praziquantel and oxamniquine have not shown significant activities than their parent compounds. The study predicted approved drugs with possible antischistosomal activities. Four schistosomal drug targets were obtained from Protein Data Bank and six hundred and twelve (612) approved drugs including their isomers were selected based on their Molinspiration® bioscore similarities with reference compounds (praziquantel, oxamniquine, [(2S,3S,4S,5S,6S)-3,4,5-triacetyloxy-6-sulfanyloxan-2-yl] methyl acetate, [propylamino-3-hydroxy-buta-1,4-dionyl]-isoleucylproline). The selected drugs and drug targets were obtained and prepared for molecular docking simulations. The molecular docking simulations were performed using AutoDockvina®-1.1.2 after validation of docking protocols while molecular dynamics simulations were performed with GROMACS-4.5.5. The binding energies were calculated using MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area). Tolmetin was predicted as potential antischistosomal drug with binding energies of -231.064 ± 18.550 and -338.636 ± 36.900 KJ/mol for sulfotransferase and thioredoxin glutathione reductase (TGR) respectively. Also diflunisal was predicted as potential antischistosomal drug with binding energies of -168.641 ± 20.370 and -290.117 ± 43.800 KJ/mol for sulfotransferase and TGR respectively. Non-covalent interactions and conformational changes were responsible for molecular recognitions and specificities and average bond measurement showed that carboxylic functional groups in diflunisal and tolmetin may interact covalently with -SH group of Cys159 in TGR. Confirmation of covalent interactions and in vitro validations are recommended.Communicated by Ramaswamy H. Sarma.


Assuntos
Esquistossomose , Esquistossomicidas , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxamniquine/química , Oxamniquine/uso terapêutico , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico
5.
Curr Top Med Chem ; 22(19): 1595-1610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34565320

RESUMO

Schistosomiasis ranks among the most important infectious diseases, with over 200 million people currently being infected and > 280,000 deaths reported annually. Chemotherapeutic treatment has relied on one drug, praziquantel, for four decades, while other drugs, such as oxamniquine and metrifonate, are no longer preferred for clinical use due to their narrow spectrum of activity - these are only active against S. mansoni and S. haematobium, respectively. Despite being cheap, safe, and effective against all schistosome species, praziquantel is ineffective against immature worms, which may lead to reinfections and treatment failure in endemic areas; a situation that necessitates repeated administration besides other limitations. Therefore, novel drugs are urgently needed to overcome this situation. In this paper, an up to date review of drug targets identified and validated against schistosomiasis while also encompassing promising clinical and preclinical candidate drugs is presented. While there are considerable efforts aimed at identifying and validating drug targets, the pipeline for new antischistosomals is dry. Moreover, the majority of compounds evaluated preclinically are not really advanced because most of them were evaluated in very small preclinical species such as mice alone. Overall, it appears that although a lot of research is going on at discovery phases, unfortunately, it does not translate to advanced preclinical and clinical evaluation.


Assuntos
Praziquantel , Esquistossomose , Animais , Descoberta de Drogas , Humanos , Camundongos , Oxamniquine/farmacologia , Oxamniquine/uso terapêutico , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma , Esquistossomose/tratamento farmacológico
6.
Int J Parasitol Drugs Drug Resist ; 16: 140-147, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111649

RESUMO

Human schistosomiasis is a debilitating, life-threatening disease affecting more than 229 million people in as many as 78 countries. There is only one drug of choice effective against all three major species of Schistosoma, praziquantel (PZQ). However, as with many monotherapies, evidence for resistance is emerging in the field and can be selected for in the laboratory. Previously used therapies include oxamniquine (OXA), but shortcomings such as drug resistance and affordability resulted in discontinuation. Employing a genetic, biochemical and molecular approach, a sulfotransferase (SULT-OR) was identified as responsible for OXA drug resistance. By crystallizing SmSULT- OR with OXA, the mode of action of OXA was determined. This information allowed a rational approach to novel drug design. Our team approach with schistosome biologists, medicinal chemists, structural biologists and geneticists has enabled us to develop and test novel drug derivatives of OXA to treat this disease. Using an iterative process for drug development, we have successfully identified derivatives that are effective against all three species of the parasite. One derivative CIDD-0149830 kills 100% of all three human schistosome species within 5 days. The goal is to generate a second therapeutic with a different mode of action that can be used in conjunction with praziquantel to overcome the ever-growing threat of resistance and improve efficacy. The ability and need to design, screen, and develop future, affordable therapeutics to treat human schistosomiasis is critical for successful control program outcomes.


Assuntos
Descoberta de Drogas , Esquistossomose , Animais , Humanos , Oxamniquine , Praziquantel/farmacologia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico
7.
PLoS Negl Trop Dis ; 14(8): e0008517, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810153

RESUMO

Currently there is only one method of treatment for human schistosomiasis, the drug praziquantel. Strong selective pressure has caused a serious concern for a rise in resistance to praziquantel leading to the necessity for additional pharmaceuticals, with a distinctly different mechanism of action, to be used in combination therapy with praziquantel. Previous treatment of Schistosoma mansoni included the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The oxamniquine activating enzyme was identified as a S. mansoni sulfotransferase (SmSULT-OR). Structural data have allowed for directed drug development in reengineering oxamniquine to be effective against S. haematobium and S. japonicum. Guided by data from X-ray crystallographic studies and Schistosoma worm killing assays on oxamniquine, our structure-based drug design approach produced a robust SAR program that tested over 300 derivatives and identified several new lead compounds with effective worm killing in vitro. Previous studies resulted in the discovery of compound CIDD-0066790, which demonstrated broad-species activity in killing of schistosome species. As these compounds are racemic mixtures, we tested and demonstrate that the R enantiomer CIDD-007229 kills S. mansoni, S. haematobium and S. japonicum better than the parent drug (CIDD-0066790). The search for derivatives that kill better than CIDD-0066790 has resulted in a derivative (CIDD- 149830) that kills 100% of S. mansoni, S. haematobium and S. japonicum adult worms within 7 days. We hypothesize that the difference in activation and thus killing by the derivatives is due to the ability of the derivative to fit in the binding pocket of each sulfotransferase (SmSULT-OR, ShSULT-OR, SjSULT-OR) and to be efficiently sulfated. The purpose of this research is to develop a second drug to be used in conjunction with praziquantel to treat the major human species of Schistosoma. Collectively, our findings show that CIDD-00149830 and CIDD-0072229 are promising novel drugs for the treatment of human schistosomiasis and strongly support further development and in vivo testing.


Assuntos
Anti-Helmínticos/farmacologia , Oxamniquine/análogos & derivados , Oxamniquine/farmacologia , Schistosoma/efeitos dos fármacos , Esquistossomose/parasitologia , Animais , Anti-Helmínticos/química , Simulação por Computador , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Estrutura Molecular , Oxamniquine/química , Ligação Proteica
8.
Chemistry ; 26(66): 15232-15241, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32852116

RESUMO

Schistosomiasis is a disease of poverty affecting millions of people. Praziquantel (PZQ), with its strengths and weaknesses, is the only treatment available. We previously reported findings on three lead compounds derived from oxamniquine (OXA), an old antischistosomal drug: ferrocene-containing (Fc-CH2 -OXA), ruthenocene-containing (Rc-CH2 -OXA) and benzene-containing (Ph-CH2 -OXA) OXA derivatives. These derivatives showed excellent in vitro activity against both Schistosoma mansoni larvae and adult worms and S. haematobium adult worms, and were also active in vivo against adult S. mansoni. Encouraged by these promising results, we conducted additional in-depth preclinical studies and report in this investigation on metabolic stability studies, in vivo studies on S. haematobium and juvenile S. mansoni, computational simulations, and formulation development. Molecular dynamics simulations supported the in vitro results on the target protein. Though all three compounds were poorly stable within an acidic environment, they were only slightly cleared in the in vitro liver model. This is likely the reason why the promising in vitro activity did not translate into in vivo activity on S. haematobium. This limitation could not be overcome by the formulation of lipid nanocapsules as a way to improve the in vivo activity. Further studies should focus on increasing the compound's bioavailability, to reach an active concentration in the microenvironment of the parasite.


Assuntos
Oxamniquine/química , Preparações Farmacêuticas , Schistosoma mansoni/química , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico
9.
Artigo em Inglês | MEDLINE | ID: mdl-32315953

RESUMO

Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.


Assuntos
Oxamniquine/farmacologia , Schistosoma/efeitos dos fármacos , Sulfotransferases/química , Animais , Estrutura Molecular , Schistosoma/metabolismo , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/metabolismo , Schistosoma japonicum/efeitos dos fármacos , Schistosoma japonicum/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomicidas/farmacologia , Sulfotransferases/efeitos dos fármacos , Sulfotransferases/metabolismo
10.
Mol Biochem Parasitol ; 236: 111257, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027942

RESUMO

Hycanthone (HYC) is a retired drug formerly used to treat schistosomiasis caused by infection from Schistosoma mansoni and S. haematobium. Resistance to HYC was first observed in S. mansoni laboratory strains and in patients in the 1970s and the use of this drug was subsequently discontinued with the substitution of praziquantel (PZQ) as the single antischistosomal drug in the worldwide formulary. In endemic regions, multiple organizations have partnered with the World Health Organization to deliver PZQ for morbidity control and prevention. While the monotherapy reduces the disease burden, additional drugs are needed to use in combination with PZQ to stay ahead of potential drug resistance. HYC will not be reintroduced into the schistosomiasis drug formulary as a combination drug because it was shown to have adverse properties including mutagenic, teratogenic and carcinogenic activities. Oxamniquine (OXA) was used to treat S. mansoni infection in Brazil during the brief period of HYC use, until the 1990s. Its antischistosomal efficacy has been shown to work through the same mechanism as HYC and it does not possess the undesirable properties linked to HYC. OXA demonstrates cross-resistance in Schistosoma strains with HYC resistance and both are prodrugs requiring metabolic activation in the worm to toxic sulfated forms. The target activating enzyme has been identified as a sulfotransferase enzyme and is currently used as the basis for a structure-guided drug design program. Here, we characterize the sulfotransferases from S. mansoni and S. haematobium in complexes with HYC to compare and contrast with OXA-bound sulfotransferase crystal structures. Although HYC is discontinued for antischistosomal treatment, it can serve as a resource for design of derivative compounds without contraindication.


Assuntos
Hicantone , Oxamniquine/análogos & derivados , Esquistossomose/tratamento farmacológico , Sulfotransferases , Animais , Cristalização/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Resistência a Medicamentos , Humanos , Hicantone/efeitos adversos , Hicantone/análogos & derivados , Hicantone/química , Oxamniquine/química , Oxamniquine/uso terapêutico , Praziquantel/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomicidas/uso terapêutico , Sulfotransferases/efeitos dos fármacos , Sulfotransferases/metabolismo
11.
Curr Comput Aided Drug Des ; 16(4): 451-459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31284869

RESUMO

BACKGROUND: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. OBJECTIVE: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. METHODS: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it's missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. RESULTS: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. CONCLUSION: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


Assuntos
Oxamniquine/farmacologia , Pró-Fármacos/farmacologia , Schistosoma/enzimologia , Esquistossomicidas/farmacologia , Sulfotransferases/metabolismo , Animais , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxamniquine/metabolismo , Pró-Fármacos/metabolismo , Schistosoma/química , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Esquistossomicidas/metabolismo , Sulfotransferases/química
12.
PLoS Pathog ; 15(10): e1007881, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652296

RESUMO

Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.


Assuntos
Resistência a Medicamentos/genética , Oxamniquine/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomicidas/uso terapêutico , Adaptação Fisiológica/genética , Alelos , Animais , Cricetinae , Humanos , Níger , Omã , Polimorfismo de Nucleotídeo Único/genética , Ratos , Esquistossomose mansoni/tratamento farmacológico , Senegal , Caramujos/parasitologia , Tanzânia
13.
PLoS Negl Trop Dis ; 13(1): e0006590, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689639

RESUMO

BACKGROUND: The arsenal in anthelminthic treatment against schistosomiasis is limited and relies almost exclusively on a single drug, praziquantel (PZQ). Thus, resistance to PZQ could constitute a major threat. Even though PZQ is potent in killing adult worms, its activity against earlier stages is limited. Current in vitro drug screening strategies depend on newly transformed schistosomula (NTS) for initial hit identification, thereby limiting sensitivity to new compounds predominantly active in later developmental stages. Therefore, the aim of this study was to establish a highly standardized, straightforward and reliable culture method to generate and maintain advanced larval stages in vitro. We present here how this method can be a valuable tool to test drug efficacy at each intermediate larval stage, reducing the reliance on animal use (3Rs). METHODOLOGY/PRINCIPAL FINDINGS: Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and successfully cultured for up to four weeks with no loss in viability in a commercially available medium. Under these serum- and cell-free conditions, development halted at the lung-stage (LuS). However, the addition of human serum (HSe) propelled further development into liver stage (LiS) worms within eight weeks. Skin and lung stages, as well as LiS, were submitted to 96-well drug screening assays using known anti-schistosomal compounds such as PZQ, oxamniquine (OXM), mefloquine (MFQ) and artemether (ART). Our findings showed stage-dependent differences in larval susceptibility to these compounds. CONCLUSION: With this robust and highly standardized in vitro assay, important developmental stages of S. mansoni up to LiS worms can be generated and maintained over prolonged periods of time. The phenotype of LiS worms, when exposed to reference drugs, was comparable to most previously published works for ex vivo harvested adult worms. Therefore, this in vitro assay can help reduce reliance on animal experiments in search for new anti-schistosomal drugs.


Assuntos
Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/crescimento & desenvolvimento , Esquistossomicidas/farmacologia , Animais , Artemeter/farmacologia , Cercárias/efeitos dos fármacos , Cercárias/crescimento & desenvolvimento , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Mefloquina/farmacologia , Oxamniquine/farmacologia , Praziquantel/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/isolamento & purificação
14.
Parasit Vectors ; 11(1): 580, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400935

RESUMO

BACKGROUND: Schistosomiasis is one of the most harmful parasitic diseases worldwide, praziquantel being the only drug in widespread use to treat it. We recently demonstrated that ferrocenyl, ruthenocenyl and benzyl derivatives of oxamniquine (Fc-OXA, Rc-OXA and Bn-OXA) are promising antischistosomal drug candidates. METHODS: In this study we assessed the tegumental damage of these three derivatives of oxamniquine using scanning electron microscopy. Adult Schistosoma mansoni and S. haematobium were exposed to a concentration of 100 µM of each drug and incubated for 4-120 h, according to their onset of action and activity. RESULTS: While on S. mansoni the fastest acting compound was Fc-OXA, which revealed high activity after 4 h of incubation, on S. haematobium, Rc-OXA revealed the quickest onset, being lethal on all males within 24 h. In both species studied, the three derivatives showed the same patterns of tegumental damage consisting of blebs, sloughing and tegument rupturing all over the body. Additionally, on S. mansoni distinct patterns of tegumental damage were observed for each of the compounds: tissue ruptures in the gynaecophoric canal for Fc-OXA, loss of spines for Rc-OXA and oral sucker rupture for Bn-OXA. CONCLUSIONS: Our study confirmed that Fc-OXA, Rc-OXA and Bn-OXA are promising broad spectrum antischistosomal drug candidates. All derivatives show fast in vitro activity against S. mansoni and S. haematobium while validating the previous finding that the parent drug oxamniquine is less active in vitro under the conditions described. This work sets the base for further studies on the identification of a lead oxamniquine derivative, with the aim of identifying a molecule with the potential to become a new drug for human use.


Assuntos
Compostos Organometálicos/farmacologia , Oxamniquine/farmacologia , Schistosoma haematobium/anatomia & histologia , Schistosoma haematobium/efeitos dos fármacos , Schistosoma mansoni/anatomia & histologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Feminino , Concentração Inibidora 50 , Camundongos , Microscopia Eletrônica de Varredura , Compostos Organometálicos/química , Oxamniquine/química , Schistosoma mansoni/ultraestrutura , Esquistossomose/parasitologia , Esquistossomicidas/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-28971860

RESUMO

To date, there is only one drug in use, praziquantel, to treat more than 250 million people afflicted with schistosomiasis, a debilitating parasitic disease. The aryl hydantoin Ro 13-3978 is a promising drug candidate with in vivo activity superior to that of praziquantel against both adult and juvenile Schistosoma mansoni organisms. Given the drug's contrasting low activity in vitro and the timing of its onset of action in vivo, it was postulated that immune-assisted parasite clearance could contribute to the drug's in vivo activity. We undertook histopathological studies to investigate this hypothesis. Infected mice were treated with an effective dose of Ro 13-3978 (100 mg/kg of body weight) and were dissected before and after the drug's in vivo onset of action. The veins and livers were excised, paraffin-embedded, and sectioned, and macrophages (IBA-1), neutrophils (Neutro), B cells (CD45R), and T cells (CD3) were stained by immunohistochemistry. For comparison, samples from infected untreated mice and mice treated with effective doses of praziquantel (400 mg/kg), oxamniquine (200 mg/kg), and mefloquine (200 mg/kg) were examined. At 24 h after treatment with Ro 13-3978, significant macrophage recruitment to the veins was observed, along with a modest increase in circulating B cells, and at 48 h, neutrophils and T cells are also present. Treatment with praziquantel and oxamniquine showed similar patterns of recruitment but with comparatively higher cellular levels, whereas mefloquine treatment resulted in minimal cell recruitment until 3 days posttreatment. Our study sheds light on the immediate immune responses to antischistosomal treatment in mice and provides further insight into immune effector mechanisms of schistosome clearance.


Assuntos
Hidantoínas/farmacologia , Mefloquina/farmacologia , Oxamniquine/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/imunologia , Esquistossomicidas/farmacologia , Animais , Linfócitos B/imunologia , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/parasitologia , Linfócitos T/imunologia
17.
Acta Trop ; 176: 179-187, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28803725

RESUMO

Neglected tropical diseases (NTDs) affect millions of people in different geographic regions, especially the poorest and most vulnerable. Currently NTDs are prevalent in 149 countries, seventeen of these neglected tropical parasitic diseases are classified as endemic. One of the most important of these diseases is schistosomiasis, also known as bilharzia, a disease caused by the genus Schistosoma. It presents several species, such as Schistosoma haematobium, Schistosoma japonicum and Schistosoma mansoni, the latter being responsible for parasitosis in Brazil. Contamination occurs through exposure to contaminated water in the endemic region. This parasitosis is characterized by being initially asymptomatic, but it is able to evolve into more severe clinical forms, potentially causing death. Globally, more than 200 million people are infected with one of three Schistosome species, including an estimated 40 million women of reproductive age. In Brazil, about 12 million children require preventive chemotherapy with anthelmintic. However, according to the World Health Organization (WHO), only about 15% of the at-risk children receive regular treatment. The lack of investment by the pharmaceutical industry for the development and/or improvement of new pharmaceutical forms, mainly aimed at the pediatric public, is a great challenge. Currently, the main forms of treatment used for schistosomiasis are praziquantel (PZQ) and oxaminiquine (OXA). PZQ is the drug of choice because it presents as a high-spectrum anthelmintic, used in the treatment of all known species of schistosomiasis and some species of cestodes and trematodes. OXA, however, is not active against the three Schistosome species. This work presents a literature review regarding schistosomiasis. It addresses points such as available treatments, the role of the pharmaceutical industry against neglected diseases, and perspectives for treatment.


Assuntos
Anti-Helmínticos/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Oxamniquine/uso terapêutico , Praziquantel/uso terapêutico , Esquistossomose/tratamento farmacológico , Animais , Pesquisa Biomédica , Brasil , Criança , Feminino , Humanos , Schistosoma haematobium , Schistosoma japonicum , Schistosoma mansoni , Esquistossomose/epidemiologia , Microbiologia da Água
18.
ACS Infect Dis ; 3(9): 645-652, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28686009

RESUMO

Schistosomiasis is a parasitic disease that affects more than 250 million people annually, mostly children in poor, tropical, rural areas. Only one treatment (praziquantel) is available, putting control efforts at risk should resistance occur. In pursuit of treatment alternatives, we derivatized an old antischistosomal agent, oxamniquine (OXA). Four organometallic derivatives of OXA were synthesized and tested against Schistosoma mansoni in vitro and in vivo. Of these, a ferrocenyl derivative, 1, killed larval and adult worms 24 h postexposure in vitro, in contrast to OXA, which lacks in vitro activity against adult worms. A dose of 200 mg/kg of 1 completely eliminated the worm burden in mice. Subsequently, a ruthenocenyl (5) and a benzyl derivative (6) of OXA were synthesized to probe the importance of the ferrocenyl group in 1. Compounds 1, 5, and 6 were lethal to both S. mansoni and S. haematobium adults in vitro. In vivo, at 100 mg/kg, all three compounds revealed S. mansoni worm burden reductions of 76 to 93%, commensurate with OXA. Our findings present three compounds with activity against S. mansoni in vitro, comparable activity in vivo, and high activity against S. haematobium in vitro. These compounds may possess a different binding mode or mode of action compared to OXA and present excellent starting points for further SAR studies.


Assuntos
Anti-Helmínticos/administração & dosagem , Compostos Organometálicos/administração & dosagem , Oxamniquine/análogos & derivados , Esquistossomose Urinária/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico , Animais , Anti-Helmínticos/síntese química , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Química Farmacêutica , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Schistosoma haematobium/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Relação Estrutura-Atividade
19.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28536265

RESUMO

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Assuntos
Resistência a Medicamentos , Proteínas de Helminto/química , Oxamniquine , Schistosoma haematobium/enzimologia , Schistosoma japonicum/enzimologia , Sulfotransferases/química , Animais , Cristalografia por Raios X , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferases/genética
20.
Bioorg Med Chem ; 25(13): 3259-3277, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495384

RESUMO

Neglected tropical diseases (NTDs) are a group of diseases that, besides prevailing in poverty conditions, contribute to the maintenance of social inequality, being a strong barrier to a country development. Schistosomiasis, a NTD, is a tropical and subtropical disease caused by the trematode Schistosoma mansoni (Africa, Middle East, Caribbean, Brazil, Venezuela, Suriname), japonicum (China, Indonesia, the Philippines), mekongi (several districts of Cambodia and the Lao People's Democratic Republic), intercalatum and guianensis (areas of tropical rainforests in Central Africa) and hematobium (Middle East Africa, Corsica, France) whose adult forms inhabit the mesenteric vessels of the host, while the intermediate forms are found in the aquatic gastropod snails of the genus Biomphalaria. Currently, praziquantel (PZQ) is the first line drug chosen for the treatment of schistosomiasis according to the World Health Organization (WHO) Model List of Essential Medicines, 2015. PZQ chemotherapy is considered to be the most important development for decades in the treatment of schistosomiasis. Beside the PZQ, oxamniquine (OXA) has been first described in 1969 and launched in Brazil by Pfizer under the name of Mansil® for oral administration. It has a lower cost when compared to PZQ, being active in the intestinal and hepatosplenic infections caused exclusively by S. mansoni, single species in Brazil. Both PZQ and OXA have limitations, as low efficacy in the treatment of acute schistosomiasis, low activity against S. mansoni in immature stages and resistance or tolerance, which is the reason why further research are still necessary for the development of a second generation of antischistosomal drugs. For the development of new PZQ analogs, three main strategies can be adopted: (a) synthesis and evaluation of PZQ analogues; (b) rational design of new pharmacophores; (c) discovery of new active compounds from screening programs on a large scale. Such (b) approach is difficult as the target of PZQ still unknown, the synthesis of new active analogues is possible from delineation of structure-activity relationships for PZQ. Thus, we proposed for a review article an accurate analysis of PZQ and OXA medicinal properties and uses, focusing on the pharmacochemical aspects of both drugs through 178 bibliographic references. The mechanisms of action will be discussed, with the latest information available in the literature (for the first time in the case of the oxamniquine). Cases of resistance are also discussed. As both drugs are available as a racemic mixture the biological impact of their stereochemistry to activity and side effects are reviewed. The results obtained for the combination of PZQ and artemisinin derivatives against immature worms are also introduced in the discussion. Using the information about more than 200 PZQ new derivatives synthetized during almost 35years since its discovery, a deep structure-activity relationship (SAR) is also proposed in this study.


Assuntos
Doenças Negligenciadas/tratamento farmacológico , Oxamniquine/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Química Farmacêutica , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Oxamniquine/química , Praziquantel/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...